How Learning Can Guide Evolution [1]

Jack Pellen-Pickersgill

July 7, 2024

(日)

1/12

The Baldwin effect describes the impact of individual learning on the evolutionary process.

The Baldwin effect describes the impact of individual learning on the evolutionary process.

What is the impact?

By applying learning on top of genetic adaptation the search for a fitness increasing co-adaptation may become easier.

Genotypes "nearby" to those which express successful traits may still yield greater fitness than their counterparts if individual learning is able to compensate for the gap.

• Each genetic sequence consists of 20 symbols $s \in \{0, 1, ?\}$.

- Each genetic sequence consists of 20 symbols $s \in \{0, 1, ?\}$.
- Within the model, each of these symbols is associated with a connection in small neural network.

- Each genetic sequence consists of 20 symbols $s \in \{0, 1, ?\}$.
- Within the model, each of these symbols is associated with a connection in small neural network.
- Edges associated with 1 bits are active and those with 0 are not.
- An edge who's associated bit is ? may be either active or inactive.

- Each genetic sequence consists of 20 symbols $s \in \{0, 1, ?\}$.
- Within the model, each of these symbols is associated with a connection in small neural network.
- Edges associated with 1 bits are active and those with 0 are not.
- An edge who's associated bit is ? may be either active or inactive.

So the task of an agent is to allocate their ? bits correctly.

Genetic Model Cont.

Index:	0	1	2	3	4	5	6	7	8	9
Value:	1	Θ	?	1	?	?	Θ	1	Θ	1

Game Model

• The "game" itself is not considered important and therefore left fairly abstract.

Game Model

- The "game" itself is not considered important and therefore left fairly abstract.
- We suppose that there is some task for which the network configured with only active edges is the unique optimal solution.

Game Model

- The "game" itself is not considered important and therefore left fairly abstract.
- We suppose that there is some task for which the network configured with only active edges is the unique optimal solution.
- In each play cycle agents receive reward only if they submit the optimal network configuration. Thus with genetic search alone discovering the optima is difficult.

• Agents may only alter the assignment of ? bits in each cycle.

- Agents may only alter the assignment of ? bits in each cycle.
- The learning strategy of each agent is essentially random search over the possible ? assignments.

- Agents may only alter the assignment of ? bits in each cycle.
- The learning strategy of each agent is essentially random search over the possible ? assignments.
- Once the optima is found the assignment is "frozen".

- Agents may only alter the assignment of ? bits in each cycle.
- The learning strategy of each agent is essentially random search over the possible ? assignments.
- Once the optima is found the assignment is "frozen".

Index:	0	1	2	3	4	5	6	7	8	9
Value:	1	Θ	?	1	?	?	Θ	1	Θ	1
Value:	1	Θ	1	1	Ο	1	Θ	1	Θ	1

イロン イボン イヨン イヨン 三日

The likelihood of an agent a_i being selected as a parent is roughly proportional to $p(a_i)$:

$$p(a_i) = \frac{1 + U(a_i)}{\sum_{i'=0}^{n} 1 + U(a_{i'})}$$
(1)

Where U is the utility function and n the population size.

The likelihood of an agent a_i being selected as a parent is roughly proportional to $p(a_i)$:

$$p(a_i) = \frac{1 + U(a_i)}{\sum_{i'=0}^{n} 1 + U(a_{i'})}$$
(1)

Where U is the utility function and n the population size.

So if agent a_1 is twice as successful as a_2 we expect to produce about twice as many offspring for a_1 .

Offspring a produced by combining the genetic code of the two parents. A cutoff is chosen at random and determines which bits are drawn from which parent.

Diagram Overview

Results

Experiments using this model produced results supporting the idea that individual learning can drastically improve evolutionary searc hes.

G. E. Hinton and S. J. Nowlan, "How learning can guide evolution," 1987. Classic/Keystone paper supporting the Baldwin effect via evolutionary simulations.